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Abstract. This paper presents an approach for classifying students in order to 
predict their final grade based on features extracted from logged data in an edu-
cation web-based system. A combination of multiple classifiers leads to a sig-
nificant improvement in classification performance. Through weighting the fea-
ture vectors using a Genetic Algorithm we can optimize the prediction accuracy 
and get a marked improvement over raw classification. It further shows that 
when the number of features is few; feature weighting is works better than just 
feature selection. 

1 Statement of problem 

Many leading educational institutions are working to establish an online teaching 
and learning presence. Several systems with different capabilities and approaches 
have been developed to deliver online education in an academic setting. In particular, 
Michigan State University (MSU) has pioneered some of these systems to provide an 
infrastructure for online instruction. The research presented here was performed on a 
part of the latest online educational system developed at MSU, the Learning Online 
Network with Computer-Assisted Personalized Approach (LON-CAPA).  

 
In LON-CAPA1, we are involved with two kinds of large data sets: 1) educational 

resources such as web pages, demonstrations, simulations, and individualized prob-
lems designed for use on homework assignments, quizzes, and examinations; and 2) 
information about users who create, modify, assess, or use these resources. In other 
words, we have two ever-growing pools of data.  

 
We have been studying data mining methods for extracting useful knowledge from 

these large databases of students using online educational resources and their re-

                                                           
1 See http://www.lon-capa.org  



corded paths through the web of educational resources. In this study, we aim to an-
swer the following two research questions: 
1) Can we find classes of students? In other words, do there exist groups of students 

who use these online resources in a similar way? If so, can we identify that class 
for any individual student? With this information, can we help a student use the 
resources better, based on the usage of the resource by other students in their 
groups? 

2) Can we classify the problems that have been used by students? If so, can we 
show how different types of problems impact students’ achievements? Can we 
help instructors to develop the homework more effectively and efficiently? 

 
We hope to find similar patterns of use in the data gathered from LON-CAPA, and 

eventually be able to make predictions as to the most-beneficial course of studies for 
each learner based on their present usage. The system could then make suggestions to 
the learner as to how to best proceed. 

2 Map the problem to Genetic Algorithm 

Genetic Algorithms have been shown to be an effective tool to use in data mining 
and pattern recognition. [7], [10], [6], [16], [15], [13], [4]. An important aspect of GAs 
in a learning context is their use in pattern recognition.  There are two different ap-
proaches to applying GA in pattern recognition: 

 
1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [3] applied GA 

to find the decision boundary in N dimensional feature space. 
 

2. Use a GA as an optimization tool for resetting the parameters in other classifiers. 
Most applications of GAs in pattern recognition optimize some parameters in the 
classification process. Many researchers have used GAs in feature selection [2], 
[9], [21], [12], [18]. GAs has been applied to find an optimal set of feature weights 
that improve classification accuracy. First, a traditional feature extraction method 
such as Principal Component Analysis (PCA) is applied, and then a classifier such 
as k-NN is used to calculate the fitness function for GA [17], [19]. Combination of 
classifiers is another area that GAs have been used to optimize. Kuncheva and Jain 
in [11] used a GA for selecting the features as well as selecting the types of indi-
vidual classifiers in their design of a Classifier Fusion System. GA is also used in 
selecting the prototypes in the case-based classification [20]. 
 
In this paper we will focus on the second approach and use a GA to optimize a 

combination of classifiers. Our objective is to predict the students’ final grades based 
on their web-use features, which are extracted from the homework data. We design, 
implement, and evaluate a series of pattern classifiers with various parameters in 
order to compare their performance on a dataset from LON-CAPA. Error rates for the 
individual classifiers, their combination and the GA optimized combination are pre-
sented.  



2.1 Dataset and Class Labels 

As test data we selected the student and course data of a LON-CAPA course, 
PHY183 (Physics for Scientists and Engineers I), which was held at MSU in spring 
semester 2002. This course integrated 12 homework sets including 184 problems, all 
of which are online. About 261 students used LON-CAPA for this course. Some of 
students dropped the course after doing a couple of homework sets, so they do not 
have any final grades. After removing those students, there remained 227 valid sam-
ples. The grade distribution of the students is shown in Fig 1. 

Fig. 1. Graph of distribution of grades in course PHY183  SS02 
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We can group the students regarding their final grades in several ways, 3 of which 
are:  
1. Let the 9 possible class labels be the same as students’ grades, as shown in table 

1 
2. We can label the students in relation to their grades and group them into three 

classes, “high” representing grades from 3.5 to 4.0, “middle” representing grades 
from 2.5 to 3, and “low” representing grades less than 2.5.  

3. We can also categorize the students with one of two class labels: “Passed” for 
grades higher than 2.0, and ”Failed” for grades less than or equal to 2.0, as 
shown in table 3. 

Table 1.  Selecting 9 class labels regarding to students’ grades in course PHY183  SS02 

1 Grade = 0.0 2 0.9% 
2 Grade = 0.5 0 0.0% 
3 Grade = 1.0 10 4.4% 
4 Grade = 1.5 28 12.4% 
5 Grade = 2.0 23 10.1% 
6 Grade = 2.5 43 18.9% 
7 Grade = 3.0 52 22.9% 
8 Grade = 3.5 41 18.0% 
9 Grade = 4.0 28 12.4% 



Table 2.  Selecting 3 class labels regarding to students’ grades in course PHY183  SS02 

High Grade >= 3.5 69 30.40% 
Middle 2.0 < Grade < 3.5 95 41.80% 

Low Grade <= 2.0 63 27.80% 

Table 2.  selecting 2 class labels regarding to students’ grades in course PHY183  SS02 

 
 
We can predict that the error rate in the first class grouping should be higher than 

the others, because the distributions of the grades over 9 classes are so different. It is 
clear that we have less data for the first three classes in the training phase, and so the 
error rate would likely be higher in the evaluation phase. 

2.2   Extractable Features 

An essential step in doing classification is selecting the features used for classifica-
tion. Below we discuss the features from LON-CAPA that were used, how they can 
be visualized (to help in selection) and why we normalize the data before classifica-
tion. 

The following features are stored by the LON-CAPA system:  
1. Total number of correct answers. (Success rate) 
2. Getting the problem right on the first try, vs. those with high number of tries. 

(Success at the first try) 
3. Total number of tries for doing homework. (Number of attempts before correct 

answer is derived) 
4. Time spent on the problem until solved (more specifically, the number of hours 

until correct. The difference between time of the last successful submission and 
the first time the problem was examined). Also, the time at which the student got 
the problem correct relative to the due date. Usually better students get the home-
work completed earlier.  

5. Total time spent on the problem regardless of whether they got the correct answer 
or not. (Difference between time of the last submission and the first time the prob-
lem was examined). 

6. Participating in the communication mechanisms, vs. those working alone. LON-
CAPA provides online interaction both with other students and with the instructor. 
Where these used? 

7. Reading the supporting material before attempting homework vs. attempting the 
homework first and then reading up on it. 

8. Submitting a lot of attempts in a short amount of time without looking up material 
in between, versus those giving it one try, reading up, submitting another one, and 
so forth. 

9. Giving up on a problem versus students who continued trying up to the deadline. 
10. Time of the first log on (beginning of assignment, middle of the week, last min-

ute) correlated with the number of tries or number of solved problems. A student 

Passed Grade  >  2.0 164 72.2% 
Failed Grade <= 2.0 63 27.8% 



who gets all correct answers will not necessarily be in the successful group if they 
took an average of 5 tries per problem, but it should be verified from this research.  
At this time we were able to extract the first six features in the PHY183 SS02 data-

set that we have chosen for the classification experiment. 

2.3 Classifiers 

Pattern recognition has a wide variety of applications in many different fields, such 
that it is not possible to come up with a single classifier that can give good results in 
all the cases.  The optimal classifier in every case is highly dependent on the problem 
domain. In practice, one might come across a case where no single classifier can 
classify with an acceptable level of accuracy. In such cases it would be better to pool 
the results of different classifiers to achieve the optimal accuracy. Every classifier 
operates well on different aspects of the training or test feature vector. As a result, 
assuming appropriate conditions, combining multiple classifiers may improve classi-
fication performance when compared with any single classifier.  

The scope of this survey is restricted to comparing some popular non-parametric 
pattern classifiers and a single parametric pattern classifier according to the error 
estimate. Six different classifiers using the LON-CAPA datasets are compared in this 
study. The classifiers used in this study include Quadratic Bayesian classifier, 1-
nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window, multi-layer 
perceptron (MLP), and Decision Tree.2  These classifiers are some of the common 
classifiers used in most practical classification problems. After some preprocessing 
operations were made on the dataset, the error rate of each classifier is reported. Fi-
nally, to improve performance, a combination of classifiers is presented. 

2.4 Normalization 

Having assumed in Bayesian and Parzen-window classifiers that the features are 
normally distributed, it is necessary that the data for each feature be normalized. This 
ensures that each feature has the same weight in the decision process. Assuming that 

the given data is Gaussian distributed, this normalization is performed using the mean 
and standard deviation of the training data. In order to normalize the training data, it 
is necessary first to calculate the sample meanµ , and the standard deviation σ  of 
each feature, or column, in this dataset, and then normalize the data using the equa-

tion(1).                         
σ
µ−

= i
i

xx           (1) 

This ensures that each feature of the training dataset has a normal distribution with 
a mean of zero and a standard deviation of one. In addition, the kNN method requires 
normalization of all features into the same range. However, we should be cautious in 
using the normalization before considering its effect on classifiers’ performances. 

                                                           
2 The first five classifiers are coded in MATLABTM 6.0, and for the decision tree classifiers we have 

used some available software packages such as C5.0, CART, QUEST, and CRUISE.  
 



2.5 Combination of Multiple Classifiers (CMC) 

In combining multiple classifiers we want to improve classifier performance. There 
are different ways one can think of combining classifiers: 
• The simplest way is to find the overall error rate of the classifiers and choose the 

one which has the least error rate on the given dataset. This is called an offline 
CMC. This may not really seem to be a CMC; however, in general, it has a better 
performance than individual classifiers.  

• The second method, which is called online CMC, uses all the classifiers followed 
by a vote. The class getting the maximum votes from the individual classifiers 
will be assigned to the test sample. This method intuitively seems to be better 
than the previous one. However, when tried on some cases of our dataset, the re-
sults were not better than the best result in previous method. So, we changed the 
rule of majority vote from “getting more than 50% votes” to “getting more than 
75% votes”. This resulted in a significant improvement over offline CMC. 

 
Using the second method, we show in table 4 that CMC can achieve a significant 

accuracy improvement in all three cases of 2, 3, and 9-classes. Now we are going to 
use GA to find out that whether we can maximize the CMC performance. 

3 Optimizing the CMC Using a GA 

We used GAToolBox3 for MATLAB to implement a GA to optimize classification 
performance. Our goal is to find a population of best weights for every feature vector, 
which minimize the classification error rate.  

 
The feature vector for our predictors are the set of six variables for every student: 

Success rate, Success at the first try, Number of attempts before correct answer is 
derived, the time at which the student got the problem correct relative to the due date, 
total time spent on the problem, and the number of online interactions of the student 
both with other students and with the instructor.  

 
We randomly initialized a population of six dimensional weight vectors with val-

ues between 0 and 1, corresponding to the feature vector and experimented with dif-
ferent number of population sizes. We found good results using a population with 
200 individuals. The GA Toolbox supports binary, integer, real-valued and floating-
point chromosome representations. Real-valued populations may be initialized using 
the Toolbox function crtrp. For example, to create a random population of 6 indi-
viduals with 200 variables each: we define boundaries on the variables in FieldD 
which is a matrix containing the boundaries of each variable of an individual.  

FieldD = [ 0 0 0 0 0 0;  % lower bound 
           1 1 1 1 1 1]; % upper bound 

                                                           
3 Downloaded from http://www.shef.ac.uk/~gaipp/ga-toolbox/ 
 



We create an initial population with Chrom = crtrp(200, FieldD), So we have 
for example: 

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26  
        0.35 0.09 0.43 0.64 0.20 0.54 
        0.50 0.10 0.09 0.65 0.68 0.46 
        0.21 0.29 0.89 0.48 0.63 0.89 

……………… 

We used the simple genetic algorithm (SGA), which is described by Goldberg in 
[9]. The SGA uses common GA operators to find a population of solutions which 
optimize the fitness values.  

3.1 Recombination 

We used “Stochastic Universal Sampling” [1] as our selection method. A form of 
stochastic universal sampling is implemented by obtaining a cumulative sum of the 
fitness vector, FitnV, and generating N equally spaced numbers between 0 and 
sum(FitnV). Thus, only one random number is generated, all the others used being 
equally spaced from that point. The index of the individuals selected is determined by 
comparing the generated numbers with the cumulative sum vector. The probability of 
an individual being selected is then given by  

 
where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual 
being selected. 

3.2 Crossover 

The crossover operation is not necessarily performed on all strings in the population. 
Instead, it is applied with a probability Px when the pairs are chosen for breeding. We 
selected Px = 0.7. There are several functions to make crossover on real-valued ma-
trices. One of them is recint, which performs intermediate recombination between 
pairs of individuals in the current population, OldChrom, and returns a new popula-
tion after mating, NewChrom. Each row of OldChrom corresponds to one individual. 
recint is a function only applicable to populations of real-value variables. Intermedi-
ate recombination combines parent values using the following formula [14]: 

 

Offspring = parent1 + Alpha ×  (parent2 – parent1) 
 

Alpha is a Scaling factor chosen uniformly in the interval [-0.25, 1.25] 

3.3 Mutation 

A further genetic operator, mutation is applied to the new chromosomes, with a set 
probability Pm. Mutation causes the individual genetic representation to be changed 
according to some probabilistic rule. Mutation is generally considered to be a back-
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ground operator that ensures that the probability of searching a particular subspace of 
the problem space is never zero. This has the effect of tending to inhibit the possibil-
ity of converging to a local optimum, rather than the global optimum. 

 
There are several functions to make mutation on real-valued population. We used 

mutbga, which takes the real-valued population, OldChrom, mutates each variable 
with given probability and returns the population after mutation, NewChrom = mut-
bga(OldChrom, FieldD, MutOpt) takes the current population, stored in the matrix 
OldChrom and mutates each variable with probability by addition of small random 
values (size of the mutation step). We considered 1/600 as our mutation rate. The 
mutation of each variable is calculated as follows: 

 

Mutated Var = Var + MutMx ×  range ×  MutOpt(2) ×  delta 
 

where  delta is an internal matrix which specifies the normalized mutation step 
size; MutMx is an  internal mask table; and MutOpt specifies  the mutation rate and 
its shrinkage during the run. The mutation operator mutbga is able to generate most 
points in the hypercube defined by the variables of the individual and the range of the 
mutation. However, it tests more often near the variable, that is, the probability of 
small step sizes is greater than that of larger step sizes.  

3.4 Fitness Function 

During the reproduction phase, each individual is assigned a fitness value derived 
from its raw performance measure given by the objective function. This value is used 
in the selection to bias towards more fit individuals. Highly fit individuals, relative to 
the whole population, have a high probability of being selected for mating whereas 
less fit individuals have a correspondingly low probability of being selected. The 
error rate is measured in each round of cross validation by dividing “the total number 
of misclassified examples” into “total number of test examples”. Therefore, our fit-
ness function measures the error rate achieved by CMC and our objective would be to 
maximize this performance (minimize the error rate). 

4 Experiment Results 

Without using GA, the overall results of classifiers’ performance on our dataset, re-
garding the four tree-classifiers, five non-tree classifiers and CMC are shown in the 
Table 4. Regarding individual classifiers, for the case of 2-classes, kNN has the best 
performance with 82.3% accuracy. In the case of 3-classes and 9-classes, CART has 
the best accuracy of about 60% in 3-classes and 43% in 9-Classes. However, consid-
ering the combination of non-tree-based classifiers, the CMC has the best perform-
ance in all three cases. That is, it achieved 86.8% accuracy in the case of 2-Classes, 
71% in the case of 3-Classes, and 51% in the case of 9-Classes. 



Table 4. Comparing the Error Rate of all classifiers on PHY183 dataset in the cases of   2-
Classes, 3-Classess, and 9-Classes, using 10-fold cross validation, without GA 

 Performance % 

Classifier 2-Classes 3-Classes 9-Classes 
C5.0 80.3 56.8 25.6 
CART 81.5 59.9 33.1 
QUEST 80.5 57.1 20.0 

Tree Classi-
fier 

CRUISE 81.0 54.9 22.9 
Bayes 76.4 48.6 23.0 
1NN 76.8 50.5 29.0 
kNN 82.3 50.4 28.5 
Parzen 75.0 48.1 21.5 
MLP 79.5 50.9 - 

    

Non-tree  
Classifier 

CMC 86.8 70.9 51.0 
 
For GA optimization, we used 200 individuals in our population, running the GA 

over 500 generations. We ran the program 10 times and got the averages, which are 
shown, in table 5. In every run 500×200 times the fitness function is called in which 
we used 10-fold cross validation to measure the average performance of CMC. So 
every classifier is called 3 ×106 times for the case of 2-classes, 3-classes and 9-
classes. Thus, the time overhead for fitness evaluation is critical. Since using the MLP 
in this process took about 2 minutes and all other four non-tree classifiers (Bayes, 
1NN, 3NN, and Parzen window) took only 3 seconds, we omitted the MLP from our 
classifiers group so we could obtain the results in a reasonable time. 

Table 5. Comparing the CMC Performance on PHY183 dataset  Using GA and without GA in 
the cases of 2-Classes, 3-Classess, and 9-Classes, 95% confidence interval. 

 Performance % 

Classifier 2-Classes 3-Classes 9-Classes 

CMC of 4 Classifiers without GA 83.87± 1.73 61.86± 2.16 49.74± 1.86 

GA Optimized CMC, Mean individual 94.09± 2.84 72.13± 0.39 62.25± 0.63 

Improvement 10.22± 1.92 10.26± 1.84 12.51± 1.75 
 

The results in Table 5 represent the mean performance with a two-tailed t-test with 
a 95% confidence interval. For the improvement of GA over non-GA result, a P-
value indicating the probability of the Null-Hypothesis (There is no improvement) is 
also given, showing the significance of the GA optimization. All have p<0.000, indi-
cating significant improvement. Therefore, using GA, in all the cases, we got more 
than a 10% mean individual performance improvement and about 12 to 15% mean 
individual performance improvement. Fig. 2 shows the graph of average mean indi-
vidual performance improvement. 



Fig. 2. Chart of comparing CMC average performance, using GA and without GA. 
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Fig. 3 shows the best result of the ten runs over our dataset. These charts represent 
the population mean, the best individual at each generation and the best value yielded 
by the run. 

Fig. 3.  Graph of GA Optimized CMC performance in the case of 2, 3, and 9-Classes 

 
 

Finally, we can examine the individuals (weights) for features by which we obtained 
the improved results. This feature weighting indicates the importance of each feature 
for making the required classification. In most cases the results are similar to Multiple 
Linear Regressions or tree-based software that use statistical methods to measure 
feature importance. 

  Table 6 shows the importance of the six features in the 3-classes case using the En-
tropy splitting criterion. Based on entropy, a statistical property called information 
gain measures how well a given feature separates the training examples in relation to 
their target classes.  Entropy characterizes impurity of an arbitrary collection of ex-
amples S at a specific node N. In [5] the impurity of a node N is denoted by i(N) such 
that:   

Entropy(S) = )(log)()( 2 j
j

j PPNi ωω∑−=         (3) 



where )( jPω  is the fraction of examples at node N that go to category jω . 

Table 6. Feature Importance in 3-Classes Using Entropy Criterion 

Feature Importance % 
Total_Correct _Answers 100.00 
Total_Number_of_Tries 58.61 
First_Got_Correct 27.70 
Time_Spent_to_Solve 24.60 
Total_Time_Spent 24.47 
Communication 9.21 

 

The GA results also show that the “Total number of correct answers” and the “To-
tal number of tries” are the most important features for the classification. The second 
column in table 6 shows the percentage of feature importance. 

5 Conclusions and Future Work 

Four classifiers were used to segregate the students. A combination of multiple classi-
fiers leads to a significant accuracy improvement in all 3 cases.  Weighing the fea-
tures and using a genetic algorithm to minimize the error rate improves the prediction 
accuracy at least 10% in the all cases of 2, 3 and 9-Classes. In cases where the num-
ber of features is low, the feature weighting worked much better than feature selec-
tion. The successful optimization of student classification in all three cases demon-
strates the merits of using the LON-CAPA data to predict the students’ final grades 
based on their features, which are extracted from the homework data.  

We are going to apply Genetic Programming to produce many different combina-
tions of features, to extract new features and improve prediction accuracy. We plan to 
use Evolutionary Algorithms to classify the students and problems directly as well. 
We also want to apply Evolutionary Algorithms to find Association Rules and De-
pendency among the groups of problems (Mathematical, Optional Response, Numeri-
cal, Java Applet, and so forth) of LON-CAPA homework data sets. 

Acknowledgements 

This work was partially supported by the National Science Foundation under ITR 
0085921, with additional support by the Andrew W. Mellon and Alfred P. Sloan 
foundations. 

References 

1. Baker, J. E.  (1987). Reducing bias and inefficiency in the selection algorithm, Proceeding  
ICGA 2, pp. 14-21,  Lawrence Erlbuam Associates, Publishers, 1987. 



2. Bala J., De Jong K., Huang J., Vafaie H., and Wechsler H. Using learning to facilitate the 
evolution of features for recognizing visual concepts. Evolutionary Computation 4(3) - Spe-
cial Issue on Evolution, Learning, and Instinct: 100 years of the Baldwin Effect. 1997. 

3.  Bandyopadhyay, S., and Muthy, C.A. “Pattern Classification Using Genetic Algorithms”, 
Pattern Recognition Letters, (1995).Vol. 16, pp. 801-808. 

4. De Jong K.A., Spears W.M. and Gordon D.F. (1993). Using genetic algorithms for concept 
learning. Machine Learning 13, 161-188, 1993. 

5. Duda, R.O., Hart, P.E., and Stork, D.G. Pattern Classification. 2nd Edition, John Wiley & 
Sons, Inc., New York NY. (2001). 

6. Falkenauer E. Genetic Algorithms and Grouping Problems. John Wiley & Sons, (1998). 
7. Freitas, A.A. A survey of Evolutionary Algorithms for Data Mining and Knowledge Discov-

ery,See: www.pgia.pucpr.br/~alex/papers. A chapter of: A. Ghosh and S. Tsutsui. (Eds.) 
“Advances in Evolutionary Computation”. Springer-Verlag, (2002). 

8. Goldberg, D.E.  Genetic Algorithms in Search, Optimization, and Machine Learning, MA, 
Addison-Wesley. (1989). 

9. Guerra-Salcedo C. and Whitley D. “Feature Selection mechanisms for ensemble creation: a 
genetic search perspective”. In: Freitas AA (Ed.) Data Mining with Evolutionary Algo-
rithms: Research Directions – Papers from the AAAI Workshop, 13-17. Technical Report 
WS-99-06. AAAI Press, (1999). 

10. Jain, A. K.; Zongker, D. “Feature Selection: Evaluation, Application, and Small Sample 
Performance”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 19, 
No. 2, February (1997). 

11. Kuncheva , L.I., and Jain, L.C., “Designing Classifier Fusion Systems by Genetic Algo-
rithms”, IEEE Transaction on Evolutionary Computation, Vol. 33 (2000), pp 351-373. 

12. Martin-Bautista MJ and Vila MA. A survey of genetic feature selection in mining issues. 
Proceeding Congress on Evolutionary Computation (CEC-99), 1314-1321. Washington 
D.C., July (1999). 

13. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. 3rd Ed. 
Springer-Verlag, (1996). 

14. Muhlenbein and Schlierkamp-Voosen D., Predictive Models for the Breeder Genetic Algo-
rithm: I. Continuous Parameter Optimization, Evolutionary Computation, (1993) Vol. 1, No. 
1, pp. 25-49. 

15. Park Y and Song M. A genetic algorithm for clustering problems. Genetic Programming 
1998: Proceeding of 3rd Annual Conference, 568-575. Morgan Kaufmann, (1998). 

16. Pei, M., Goodman, E.D., and Punch, W.F. "Pattern Discovery from Data Using Genetic 
Algorithms", Proceeding of 1st  Pacific-Asia Conference Knowledge Discovery & Data Min-
ing (PAKDD-97).  Feb. (1997). 

17. Pei, M., Punch, W.F., and Goodman, E.D. "Feature Extraction Using Genetic Algorithms", 
Proceeding of International Symposium on Intelligent Data Engineering and Learning’98 
(IDEAL’98), Hong Kong, Oct. (1998). 

18. Punch, W.F., Pei, M., Chia-Shun, L., Goodman, E.D., Hovland, P., and Enbody R. "Further 
research on Feature Selection and Classification Using Genetic Algorithms", In 5th Interna-
tional Conference on Genetic Algorithm , Champaign IL, pp 557-564, (1993). 

19. Siedlecki, W., Sklansky J., A note on genetic algorithms for large-scale feature selection, 
Pattern Recognition Letters, Vol. 10, Page 335-347, (1989). 

20. Skalak D. B. (1994). Using a Genetic Algorithm to Learn Prototypes for Case Retrieval an 
Classification. Proceeding of the AAAI-93 Case-Based Reasoning Workshop, pp. 64-69. 
Washigton, D.C., American Association for Artificial Intelligence, Menlo Park, CA, 1994. 

21. Vafaie H and De Jong K. “Robust feature Selection algorithms”. Proceeding 1993 IEEE Int. 
Conf on Tools with AI, 356-363. Boston, Mass., USA. Nov. (1993). 

 


