
Optimizing Classification Ensembles via a Genetic
Algorithm for a Web-based Educational System*

Behrouz Minaei-Bidgoli1, Gerd Kortemeyer2, William F. Punch1

1 Genetic Algorithms Research and Applications Group (GARAGe),
Department of Computer Science & Engineering, Michigan State University

2340 Engineering Building, East Lansing, MI 48824, USA
{minaeibi, punch}@cse.msu.edu
http://garage.cse.msu.edu

2 Division of Science and Math Education, Michigan State University,
College of Natural Science, LITE lab, East Lansing, MI 48824, USA

korte@lite.msu.edu
http://www.lon-capa.org

Abstract. Classification fusion combines multiple classifications of data into a
single classification solution of greater accuracy. Feature extraction aims to re-
duce the computational cost of feature measurement, increase classifier effi-
ciency, and allow greater classification accuracy based on the process of deriv-
ing new features from the original features. This paper represents an approach
for classifying students in order to predict their final grades based on features
extracted from logged data in an educational web-based system. A combination
of multiple classifiers leads to a significant improvement in classification per-
formance. By weighing feature vectors representing feature importance using a
Genetic Algorithm (GA) we can optimize the prediction accuracy and obtain a
marked improvement over raw classification. We further show that when the
number of features is few, feature weighting and transformation into a new
space works efficiently compared to the feature subset selection. This approach
is easily adaptable to different types of courses, different population sizes, and
allows for different features to be analyzed.

1 Motivation

Several web-based educational systems with different capabilities and approaches
have been developed to deliver online education in an academic setting. In particular,
Michigan State University (MSU) has pioneered some of these systems to provide an
infrastructure for online instruction. The research presented here was performed on a
part of the latest online educational system developed at MSU, the Learning Online
Network with Computer-Assisted Personalized Approach (LON-CAPA). LON-CAPA
is involved with two kinds of large data sets: 1) educational resources such as web
pages, demonstrations, simulations, and individualized problems designed for use on
homework assignments, quizzes, and examinations; and 2) information about users

* This work was partially supported by the National Science Foundation under ITR 0085921.

who create, modify, assess, or use these resources. In other words, we have two ever-
growing pools of data.

This paper investigates methods for extracting useful and interesting patterns from
these large databases of students using online educational resources and their re-
corded paths within the system. We aim to answer the following research questions:
Can we find classes of students? In other words, do there exist groups of students
who use these online resources in a similar way? If so, can we predict a class for any
individual student? With this information, can we then help a student use the re-
sources better, based on the usage of the resource by other students in their groups?

We hope to find similar patterns of use in the data gathered from LON-CAPA, and
eventually make predictions as to the most-beneficial course of studies for each
learner based on their past and present usage. The system could then make sugges-
tions to the learner as to how best to proceed.

2 Background on using GAs for Feature Selection/Extraction

Genetic Algorithms (GA) have been shown to be an effective tool to use in data
analysis and pattern recognition [1], [2], [3]. An important aspect of GAs in a learn-
ing context is their use in pattern recognition. There are two different approaches to
applying GA in pattern recognition:

1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [4] applied GA

to find the decision boundary in N dimensional feature space.

2. Use a GA as an optimization tool for resetting the parameters in other classifiers.
Most applications of GAs in pattern recognition optimize some parameters in the
classification process. Many researchers have used GAs in feature selection [5],
[6], [7], [8]. GAs have been applied to find an optimal set of feature weights that
improve classification accuracy. First, a traditional feature extraction method such
as Principal Component Analysis (PCA) is applied, and then a classifier such as k-
NN is used to calculate the fitness function for GA [9], [10]. Combination of classi-
fiers is another area that GAs have been used to optimize. Kuncheva and Jain in
[11] used a GA for selecting the features as well as selecting the types of individual
classifiers in their design of a Classifier Fusion System. GA is also used in select-
ing the prototypes in the case-based classification [12].

In this paper we focus on the second approach and use a GA to optimize a combi-

nation of classifiers. Our objective is to predict the students’ final grades based on
their web-use features, which are extracted from the homework data. We design,
implement, and evaluate a series of pattern classifiers with various parameters in
order to compare their performance on a dataset from LON-CAPA. Error rates for the
individual classifiers, their combination and the GA optimized combination are pre-
sented.

Two approaches are proposed for the problem of feature extraction and selection.
The filter model chooses features by heuristically determined “goodness/relevant” or

knowledge, while the wrapper model does this by the feedback of classifier evalua-
tion, or experiment. Research has shown the wrapper model outperforms the filter
model comparing the predictive power on unseen data [13]. We propose a wrapper
model for feature extraction through setting different weights for features and getting
feedback from ensembles of classifiers.

3 Dataset and Class Labels

As test data we selected the student and course data of a single LON-CAPA course,
BS111 (Biological Sciences), which was held at MSU in spring semester 2003. This
course integrated 24 homework sets, including 229 problems, all of which are online.
All 402 students used LON-CAPA for this course. Some students who dropped the
course in mid-semester have initial homework scores, but no final grades. After re-
moving those students, there remained 352 valid samples. The grade distribution of
the students is shown in Fig 1.

0 10 20 30 40 50 60

of Students

0

0.5

1

1.5

2

2.5

3

3.5

4

G
ra

de
s

Fig. 1. LON-CAPA: BS111 SS03, Grades distribution

We can group the students regarding their final grades in several ways, three of

which are:

1. The nine possible labels can be the same as students’ grades, as shown in Table 1
2. We can group them into three classes, “high” representing grades from 3.5 to 4.0,

“middle” representing grades from 2.5 to 3, and “low” representing grades less
than 2.5, as shown in Table 2.

3. We can also categorize students with one of two class labels: “Passed” for grades
above 2.0, and “Failed” for grades less than or equal to 2.0, as shown in Table 3.

Table 2. Selecting 3-Classes labels regarding to students’ grades in course BS111 SS03

Class Grade # of Students Percentage
High Grade ≥ 3.5 84 23.86%

Middle 2.0 < Grade < 3.5 103 29.26%
Low Grade ≤ 2.0 165 46.88%

Class Grade # of Std. Percentage
1 0.0 37 10.51%
2 0.5 2 0.57%
3 1.0 21 5.97%
4 1.5 52 14.77%
5 2.0 53 15.06%
6 2.5 51 14.49%
7 3.0 52 14.77%
8 3.5 32 9.09%
9 4.0 52 14.77%

Table 1. Selecting 9-class labels

Table 3. selecting 2-Classes labels regarding to students’ grades in course BS111 SS03

Class Grade # of Students Percentage
Passed Grade > 2.0 187 53.13%
Failed Grade ≤ 2.0 165 46.88%

An essential step in performing classification is selecting the features used for clas-

sification. The BS111 course had an activity log with approximately 368 MB. After
cleansing, we found 48 MB of useful data. We mined from these logged data
1,689,656 transactions from which the following features were extracted:

1. Total number of tries for doing homework. (Number of attempts before correct

answer is derived)
2. Total number of correct answers. (Success rate)
3. Getting the problem correct on the first try vs. those with high number of tries.

(Success at the first try)
4. Getting the problem correct on the second try.
5. Getting the problem correct between 3 and 9 tries.
6. Getting the problem correct with high number of tries (10 or more tries).
7. Total time that passed from the first attempt, until the correct solution was dem-

onstrated, regardless of the time spent logged in to the system.
8. Total time spent on the problem regardless of whether they got the correct an-

swer or not.

4 Classification ensembles

Pattern recognition has a wide variety of applications in many different fields, such
that it is not possible to come up with a single classifier that can give good results in
all cases. The optimal classifier in every case is highly dependent upon the problem
domain. In practice, one might come across a case where no single classifier can
achieve an acceptable level of accuracy. In such cases it would be better to pool the
results of different classifiers to achieve the optimal accuracy. Every classifier oper-
ates well on different aspects of the training or test feature vector. As a result, assum-
ing appropriate conditions, combining multiple classifiers may improve classification
performance when compared with any single classifier.

The scope of this study is restricted to comparing some popular non-parametric
pattern classifiers and a single parametric pattern classifier according to the error
estimate. Four different classifiers using the LON-CAPA dataset are compared in this
study. The classifiers used in this study include Quadratic Bayesian classifier, 1-
nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window.† These are
some of the common classifiers used in most practical classification problems. After
some preprocessing operations the optimal k=3 is chosen for kNN algorithm. To im-
prove classification performance, a fusion of classifiers is performed.

† The classifiers are coded in MATLABTM 6.5.

Normaliztion. Having assumed in Bayesian and Parzen-window classifiers that the
features are normally distributed, it is necessary that the data for each feature be nor-
malized. This ensures that each feature has the same weight in the decision process.
Assuming that the given data is Gaussian, this normalization is performed using the
mean and standard deviation of the training data. In order to normalize the training
data, it is necessary first to calculate the sample meanµ , and the standard deviation
σ of each feature in this dataset, and then normalize the data using the equation (1).

σ
µ−

= i
i

xx (1)

This ensures that each feature of the training dataset has a normal distribution with
a mean of zero and a standard deviation of unity. In addition, the kNN method re-
quires normalization of all features into the same range.

Combination of Multiple Classifiers. Clearly, the data here suggest that in combin-
ing multiple classifiers we can improve classifier performance. There are different
ways one can think of combining classifiers:

• The simplest way is to find the overall error rate of the classifiers and choose the
one which has the least error rate on the given dataset. This is called an offline
classification fusion. This may appear to be a classification fusion; however, in
general, it has a better performance than individual classifiers.

• The second method, which is called online classification fusion, uses all the clas-

sifiers followed by a vote. The class getting the maximum votes from the individ-
ual classifiers will be assigned to the test sample.

Using the second method we show that classification fusion can achieve a signifi-

cant accuracy improvement in all three cases of 2-, 3-, and 9-Classes. A GA is em-
ployed to determine whether classification fusion performance can be maximized.

5 GA-Optimized ensembles of classifications
Our goal is to find a population of best weights for every feature vector, which

minimize the classification error rate. The feature vector for our predictors are the set
of eight variables for every student: Number of attempts before correct answer is
derived, Success rate, Success at the first try, Success at the second try, Success with
number of tries between three and nine, Success with high number of tries, the time at
which the student got the problem correct relative to the due date, and total time spent
on the problem. We randomly initialized a population of eight dimensional weight
vectors with values between 0 and 1, corresponding to the feature vector and experi-
mented with different number of population sizes. We found good results using a
population with 200 individuals. Real-valued populations may be initialized using the
GA MATLAB Toolbox function crtrp. For example, to create a random population of
200 individuals with eight variables each: we define boundaries on the variables in
FieldD which is a matrix containing the boundaries of each variable of an individual.

FieldD = [0 0 0 0 0 0 0 0 ; % lower bound
 1 1 1 1 1 1 1 1]; % upper bound

We create an initial population with Chrom = crtrp(200, FieldD), So we have
for example:

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26 0.31 0.52
 0.35 0.09 0.43 0.64 0.20 0.54 0.43 0.90
 0.50 0.10 0.09 0.65 0.68 0.46 0.29 0.67
 0.21 0.29 0.89 0.48 0.63 0.81 0.05 0.12

………………

We used the simple genetic algorithm (SGA), which is described by Goldberg in
[14]. The SGA uses common GA operators to find a population of solutions which
optimize the fitness values. We used the Stochastic Universal Sampling [14] as our
selection method, mainly due to its popularity and functionality. A form of stochastic
universal sampling is implemented by obtaining a cumulative sum of the fitness vec-
tor, FitnV, and generating N equally spaced numbers between 0 and sum(FitnV).
Thus, only one random number is generated, all the others used being equally spaced
from that point. The index of the individuals selected is determined by comparing the
generated numbers with the cumulative sum vector. The probability of an individual
being selected is then given by

where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual
being selected.

The operation of crossover is not necessarily performed on all strings in the popu-
lation. Instead, it is applied with a probability Px when the pairs are chosen for breed-
ing. We selected Px = 0.7 since this would preserve a reasonably high level of the
original population. Intermediate recombination combines parent values using the
following formula [15]:

Offspring = parent1 + Alpha × (parent2 – parent1) (3)

where Alpha is a scaling factor chosen uniformly in the interval [-0.25, 1.25].
A further genetic operator, mutation is applied to the new chromosomes, with a set

probability Pm as the rate of mutation. Mutation causes the individual genetic repre-
sentation to be changed according to some probabilistic rule. Mutation is generally
considered to be a background operator that ensures that the probability of searching
a particular subspace of the problem space is never zero. This has the effect of tend-
ing to inhibit the possibility of converging to a local optimum, rather than the global
optimum. We considered Pm = 1/800 as our mutation rate, due to its small value with
respect to the population. The mutation of each variable is calculated as follows:

Mutated Var = Var + MutMx × range × MutOpt(2) × delta (4)

where delta is an internal matrix which specifies the normalized mutation step size;
MutMx is an internal mask table; and MutOpt specifies the mutation rate and its
shrinkage during the run.

During the reproduction phase, each individual is assigned a fitness value derived
from its raw performance measure given by the objective function. This value is used
in the selection to bias towards more fit individuals. Highly fit individuals, relative to
the whole population, have a high probability of being selected for mating whereas

∑
=

=
indN

i
i

i
i

xf

xf
xF

1

)(

)(
)((2)

less fit individuals have a correspondingly low probability of being selected. The
error rate is measured in each round of cross validation by dividing “the total number
of misclassified examples” into “total number of test examples”. Therefore, our fit-
ness function measures the accuracy rate achieved by classification fusion and our
objective would be to maximize this performance (minimize the error rate).

6 Experimental Results
Without using GA, the overall results of classification performance on our dataset for
four classifiers and classification fusion are shown in the Table 4. Regarding individ-
ual classifiers, 1NN and kNN have the best performance in the case of 2-, 3-, and 9-
Classes, of approximately 62%, 50% and 35% accuracy, respectively. However, the
classification fusion improved the classification accuracy significantly in all three
cases. That is, it achieved 72% accuracy in the case of 2-Classes, 59% in the case of
3-Classes, and 43% in the case of 9-Classes.

Table 4. Comparing the average performance (%) of ten runs of classifiers on BS111 dataset
for 2-, 3-, and 9-Classes, using 10-fold cross validation, without GA optimization

Classifier 2-Classes 3-Classes 9-Classes
Bayes 52.6 38.8 22.1
1NN 62.1 45.3 29.0
kNN 55.0 50.6 34.5

Parzen 59.7 42.9 22.6
Classification Fusion 72.2 58.8 43.1

For GA optimization, we used 200 individuals (weight vectors) in our population,

running the GA over 500 generations. We ran the program 10 times and obtained the
averages, which are shown, in Table 5.

Table 5. Comparing the classification fusion performance on BS111 dataset Using-GA and
without-GA in the cases of 2-, 3-, and 9-Classes, 95% confidence interval

Classifier 2-Classes 3-Classes 9-Classes
Classification fusion of 4 Classifiers

without GA optimization 71.19± 1.34 58.92± 1.36 42.94± 2.06

GA Optimized Classification Fusion,
Mean individual (not best value) 81.09± 2.42 70.13± 0.89 55.25± 1.03

Improvement of Mean individual 9.82± 1.33 11.06± 1.84 12.71± 0.75

The results in Table 5 represent the mean performance with a two-tailed t-test with

a 95% confidence interval. For the improvement of GA over non-GA result, a P-
value indicating the probability of the Null-Hypothesis (There is no improvement) is
also given, showing the significance of the GA optimization. All have p<0.001, indi-
cating significant improvement. Therefore, using GA, in all the cases, we got more
than a 10% mean individual performance improvement and about 11 to 16% best
individual performance improvement. Fig. 2 shows the results of one of the ten runs

in the case of 2-Classes. The dotted line represents the population mean, and the solid
line shows the best individual at each generation and the best value yielded by the run
(Due to the space limitation, only two graphs are shown).

Fig. 2. GA-Optimized Combination of Multiple Classifiers’ (CMC) performance in the case of

2- and 3-Classes, 200 weight vectors individuals, 500 Generations

Finally, we can examine the individuals (weights) for features by which we ob-
tained the improved results. This feature weighting indicates the importance of each
feature for making the required classification. In most cases the results are similar to
Multiple Linear Regressions or some tree-based software (like CART) that use statis-
tical methods to measure feature importance. The GA feature weighting results, as
shown in Table 6, state that the “Success with high number of tries” is the most im-
portant feature in all three cases. The “Total number of correct answers” feature is
also important in some cases.

Table 6. Relative Feature Importance%, Using GA weighting

Feature 2-Classes 3-Classes 9-Classes
Total Number of Tries 18.9 17.8 10.7
Total # of Correct Answers 84.7 57.1 27.4
of Success at the First Try 14.4 55.2 34.2
of Success at the Second Try 16.5 25.9 22.0
Got Correct with 3-9 Tries 21.2 38.8 11.1
Got Correct with # of Tries ≥ 10 91.7 69.1 67.3
Time Spent to Solve the Problems 32.1 14.1 28.3
Total Time Spent on the Problems 36.5 15.4 33.5

7 Conclusions and Future Work

We proposed a new approach to classifying student usage of web-based instruc-
tion. Four classifiers are used in grouping the students. A combination of multiple
classifiers leads to a significant accuracy improvement in the 2-, 3- and 9-Class cases.
Weighing the features and using a genetic algorithm to minimize the error rate im-
proves the prediction accuracy by at least 10% in the all three test cases. In cases

where the number of features is low, feature weighting worked much better than fea-
ture selection. The successful optimization of student classification in all three cases
demonstrates the merits of using the LON-CAPA data to predict the students’ final
grades based on their features, which are extracted from the homework data. This
approach is easily adaptable to different types of courses, different population sizes,
and allows for different features to be analyzed. This work represents a rigorous ap-
plication of known classifiers as a means of analyzing and comparing use and per-
formance of students who have taken a technical course that was partially/completely
administered via the web.

In the present work, we propose an approach for predicting students’ performance
based on extracting the average of feature values over all of the problems in a course.
For future work, we plan to implement such an optimized assessment tool for every
student on any particular problem. Therefore, we can track students’ behaviors on a
particular problem over several semesters.

References
1. Raymer, M.L. Punch, W.F., Goodman, E.D., Kuhn, L.A., and Jain, A.K.: Dimensionality Reduction

Using Genetic Algorithms. IEEE Transactions on Evolutionary Computation, Vol. 4, (2000) 164-171
2. Jain, A. K.; Zongker, D. Feature Selection: Evaluation, Application, and Small Sample Performance.

IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 19, No. 2, February (1997)
3. De Jong K.A., Spears W.M. and Gordon D.F.: Using genetic algorithms for concept learning. Machine

Learning 13, (1993) 161-188
4. Bandyopadhyay, S., and Muthy, C.A.: Pattern Classification Using Genetic Algorithms. Pattern Recog-

nition Letters, Vol. 16, (1995) 801-808
5. Bala J., De Jong K., Huang J., Vafaie H., and Wechsler H.: Using learning to facilitate the evolution of

features for recognizing visual concepts. Evolutionary Computation 4(3) - Special Issue on Evolution,
Learning, and Instinct: 100 years of the Baldwin Effect (1997)

6. Guerra-Salcedo C. and Whitley D.: Feature Selection mechanisms for ensemble creation: a genetic search
perspective. In: Freitas AA (Ed.) Data Mining with Evolutionary Algorithms: Research Directions – Pa-
pers from the AAAI Workshop, 13-17. Technical Report WS-99-06. AAAI Press (1999)

7. Vafaie, H. and De Jong, K.: Robust feature Selection algorithms. Proceeding of IEEE International
Conference on Tools with AI, Boston, Mass., USA. Nov. (1993) 356-363

8. Martin-Bautista M.J., and Vila M.A.: A survey of genetic feature selection in mining issues. Proceeding
Congress on Evolutionary Computation (CEC-99), Washington D.C., July (1999) 1314-1321

9. Pei, M., Goodman, E.D., and Punch, W.F.: Pattern Discovery from Data Using Genetic Algorithms.
Proceeding of 1st Pacific-Asia Conference Knowledge Discovery & Data Mining (PAKDD-97) (1997)

10. Punch, W.F., Pei, M., Chia-Shun, L., Goodman, E.D., Hovland, P., and Enbody R.: Further research on
Feature Selection and Classification Using Genetic Algorithms. In 5th International Conference on Ge-
netic Algorithm, Champaign IL, (1993) 557-564

11. Kuncheva, L.I., and Jain, L.C.: Designing Classifier Fusion Systems by Genetic Algorithms. IEEE
Transaction on Evolutionary Computation, Vol. 33 (2000) 351-373

12. Skalak D. B.: Using a Genetic Algorithm to Learn Prototypes for Case Retrieval an Classification.
Proceeding of the AAAI-93 Case-Based Reasoning Workshop, Washigton, D.C., American Association
for Artificial Intelligence, Menlo Park, CA, (1994) 64-69

13. John, G.H., Kohavi, R., Pfleger K.: Irrelevant Features and the Subset Selection Problem. Proceedings
of the Eleventh International Conference of Machine Learning, Morgan Kaufmann Publishers, San
Francisco, CA (1994) 121-129

14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. MA, Addison-
Wesley (1989)

15. Muhlenbein and Schlierkamp-Voosen D.: Predictive Models for the Breeder Genetic Algorithm: I.
Continuous Parameter Optimization, Evolutionary Computation, Vol. 1, No. 1 (1993) 25-49

